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Contact problems, when wear is taken into account, are usually reduced to distinctive integral equations containing a 

Fredholm operator with respect to the space coordinate and a Volterra operator with respect to time 11, 21. In developing 

previous results [3] an effective method of solving such equations is developed for the case when the wear resistance on the 

surface of one of the interacting bodies changes periodically with respect to the space variable (the two-dimensional case). A 

similar problem was considered previously in a somewhat different formulation in [4,5]. 0 2002 Eisevier Science Ltd. All rights 

reserved. 

1. FORMULATION OF THE PROBLEM AND THE DERIVATION OF 
THE FUNDAMENTAL INTEGRAL EQUATION 

Suppose an elastic layer of thickness h is rigidly attached to a base, and a rigid infinite plate is impressed 
into its upper face by a specific force q(t), which has the dimensions of stress and which depends on 
the time f. The plate moves with constant velocity I/ in the direction of the z axis (Fig. l), and forces 
of Coulomb friction arise in the region of contact between the plate and the layer, producing wear of 
the layer surface. 

We will assume that the wear resistance of the surface of the layer varies periodically along thex axis 
in steps of ?!I. Such a surface structure may be formed, for example, by laser processing or by grinding 
with abrasives. 

We will assume that abrasive wear occurs. Then, as has been established experimentally [6], the rate 
of linear wear 

w = Vm(x)z(x, t) (1.1) 

where m(x) is the wear resistance (a periodic function with period 21), and Z(X, t) is the shear contact 
force. Hence it follows that when the surface of the rigid plate is displaced in the direction of they axis, 
we will have, due to wear of the layer, 

u* = -Vkm(x)i q(x, z)dT (1.2) 
0 

where k is the Coulomb friction coefficient and q(x, t) is the contact pressure. Without loss of generality, 
we will henceforth use the following expression for the function m(x) 

m(x) = m. + m, cos(7r.x / I), m. > ml > 0 (1.3) 

The displacement of the surface of the rigid plate in the direction of they axis, due to elastic deforma- 
tion of the layer, is given by the formulae [7] 

8=C 
l-v’ 

K(t) = 7 =cosutdu 
0 u 

L(u) = 
2xsh2u-4u 

2xch2u+1+x2+4u2’ 
x=3-4v 

(1.4) 
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Fig. 1 

Here G and v are the elasticity constants of the layer and it is assumed that the antiplane deformation 
of the layer, due to the shear forces 7(x, t), is unrelated to its plane deformation. 

The condition for the plate to be in contact with the layer when y = h has the form 

u*+u =-6(t), lxl<m (1.5) 

where s(t) is the rigid displacement of the plate in the negative direction of they axis due to the action 
of the force q(t), where 

(1.6) 

Substituting expressions (1.2) and (1.4) into (1.5), to determine the contact pressure we obtain the 
integral equation 

$7 dS.r)K(~) dc + “km(x); q(x, z)dz = 6(t) 
0 

(1.7) 

the solution of which must be obtained with the integral condition (1.6) in the time interval 0 G t G T, 
where T is limited solely by the conditions for the displacements U* and u to be comparable and for 
the pressure q(x, t) to be non-negative for all ]x I< m. 

2. REDUCTION TO A SYSTEM OF SEQUENTIALLY SOLVED 
INTEGRAL EQUATIONS 

In formulae (1.6) and (1.7) we will change to dimensionless quantities 

X 
I’=--, tt _ Vkm& 4(x, t> 

1 1 ’ 
A=;, p(r’)=+), cp(x’,t’)=T 

f(f) = y m(x) n(x’) = - = l+mcosm’, m=T 
m0 m0 

Omitting the primes, we will have 

i-7 v&W(~) d5 + n(x,j qdx, z)dz = f(t) 
0 

Suppose, further, that the change with time of the dimensionless rigid displacement of the platef(t) 
is specified. Following the well-known procedure [8], we will represent the functionsf(t) and cp(x, t) in 
the form of a power series with respect to the small time parameter TJ E [0, l] 

- 
f(t) = igo hrl’. q= 1--+’ (2.3) 
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and note that u is an arbitrary constant; the assignment of a value to this depends on what range of 
variation of the time t it is desired to investigate. 

We substitute series (2.3) into Eq. (2.2) and, taking into account the fact that 

we obtain the relation 

(2.4) 

(2.5) 

Equating terms of like powers of TJ on the right and left, we arrive at an infinite system of integral 
equations for the sequential determination of the functions cp,(~) 

We will further show that any of Eqs (2.6) can be solved in closed form. 

(2.6) 

3. THE SOLUTION FOR THE CASE WHEN THE RELATIVE 
DISPLACEMENT OF THE PLATE IS SPECIFIED 

We will seek solutions of Eqs (2.6) in the form 

V,(X)= i Aj”cosnjx, isO (3.1) 
j=O 

Taking representation (1.4) of the kernel K(t) and the convolution theorem for the Fourier integral 
transform [9] into account, we obtain a solution of the first equation of (2.6) in the form 

cpo(x) = A;” (0) _ h , A, --, 
4(x - I) 

a0 ao=(X 
(3.2) 

We will put 

Substituting expression (3.1) into (3.3) and transforming, we obtain 

F; = A - t 
C 
;gi q3 cos 7cs.x + F ‘< ai,s+, 

(’ 

i 
COs7Tsx+ C ais_, CosKsx +maiocos nix ; 

s 0 s=o 1 I 
r-l 

Qi.3 = C A!“, u,,~ = 0, s > i (3.4) 
T=S 

We will put 

(pi(51K (3.5) 

Substituting expression (3.1) and expression (1.4) for the kernel K(t) into (3.5) and again applying the 
convolution theorem, we obtain 

G, = i ajAj”cosnjx, Unjh) a.=-, j2l 

j=o 

, 
Tci 

(3.6) 
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Equating F; of the form (3.4) and Gi of the form (3.6) by virtue of system (2.6), we obtain, when 
i 2 1, the following recurrence system of relations for determining the coefficientsAy) in (3.1) 

2s jci-2: ajAji)=-& 
‘P [ ai,j +:Cai,j+l +aiqj-I) 

1 

j=i- 1: ai_lA,!!\ =-i aiqi_l +TQ_, 

(3.7) 

j=i: a.A!‘) 1 
I I =-_mUi i_l 

‘CL ’ 

Note that, when i = 1, one must only use the first two relations of (3.7), when i = 2 one must use 
the first two and the last relation, when i = 3 one must use the first two and the last two relations, and 
when i 2 4 one must use all of relations (3.7). 

Thus, as a result of solving integral equation (2.2) the required expression for the relative contact 
pressure cp(~, t) is obtained. This is a power series in the reduced time and a trigonometric series in the 
coordinate. 

Graphs were drawn of the relative rigid displacementf(t) and the relative forcep(t) as a function of 
the time t (the continuous curves in Fig. 2) and also graphs of the relative contact pressure cp(x, t) as 
a function of the x coordinate and the time t (Fig. 3 for the time interval (0, 1) and Fig. 4 for the time 
interval (0, 3)) for the following conditions: a relative thickness of the layer h = 2, Poisson’s ratio 
v = 0.3, a reduced time constant u = 1.2, a friction coefficient k = 0.3 and a wear resistance coefficient 
m = 0.3. In Fig. 5 (for the time interval (0,3)) for the above values of the parameters we show a graph 
of the worn surface of the layer, given by the expression 
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as a function of the x coordinate and the time t. In this problem the relative rigid displacement f(t) = 
0.0001 was the initial displacement. 

It can be seen from Fig. 2 that adjustment of the surfaces is completed when the dimensionless time 
t = 4. 

The results obtained agree well with the physical picture of what occurs. In fact, suppose we are given 
the relative rigid displacementf(t) = const. Then, at the initial instant, all points of the surface of the 
layer will experience a certain equal pressure, and then, after a certain time, as the surface of the layer 
wears away the pressure will weaken (this decrease will be non-uniform, since it depends on the variable 
wear resistance of the surface, i.e. it is periodic in this case) until the wear is such that the contacting 
surfaces are no longer in contact (the pressure at points of the layer surface vanishes). The relative 
force p(t) in this case will tend exponentially to zero. 
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4. THE SOLUTION FOR THE CASE WHEN THE RELATIVE FORCE ON 
THE PLATE IS SPECIFIED 

Suppose now that we are given the change with time of the dimensionless specific forcep(t) rather than 
the change with time of the dimensionless rigid displacement of the platef(t) (this is simpler to realise 
in practice). 

We expand the function p(t) in series 

Ptr) = ii PAi 

i=o 
(4.1) 

Substituting series (4.1) and the second series of (2.3) into the second relation of (2.2) we obtain 

Now, taking (3.1) into account we find from (4.2) that 

cpb” = p; (4.3) 

and, consequently, by virtue of solution (3.2) 

fo = crop0 (4.4) 

Further, using recurrence formulae (3.7) and taking Eq. (4.3) into account we obtain successively 
Af(j > 1) andf;. 

For conditions similar to those indicated in Section 3, we drew graphs of the relative rigid displacement 
,f(t) and the relative forcep(t) as a function of the time t (the dashed curves in Fig. 2). The graphs of 
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the relative contact pressure cp(x, t), and also graphs of the worn surface of the layer g(x, t), given by 
formula (3.8), as a function of the x coordinate and the time t are very similar in form to the 
corresponding graphs shown in Figs 3-5, and are therefore omitted. 

Here the relative force p(t) = 0.0002? was taken as the initial force. 
It can be seen from Fig. 2 that in this cast adjustment of the surfaces is completed when the 

dimensionless time t = 6. 
The results obtained also agree well with the physical picture of what is occurring. In fact, if we specify 

the relative force, which tends exponentially to zero with time, then obviously this must lead to the fact 
that the relative rigid displacementf(t) will tend to a certain constant value, and for the relative contact 
pressure we obtain relations similar to those in the direct problem. 

5. THE ASYMPTOTIC SOLUTION FOR LONG TIMES 

Consider once again the case of a relatively long time t, when 

f(t) = fl,(f +const)+ f*(t) (5.1) 

where f, (t) + 0 monotonically as t + M. In this case, by a simple analysis of Eq. (2.2) it can be shown 
that 

cp(x. r> = fm / n(x) + cp*(x, t) 

p(r) = fm 41 - m2)+ p*(t) (5.2) 

where cp,(x, t) -+ 0 andp,,(t) + 0 monotonically as t + m. The inverse assertion also holds: if p(t) has 
the form (5.2), thenf(t) 1s given by formula (5.1) and cp(~, t) is given by the first formula of (5.2). 

This research was supported financially by the Russian Foundation for Basic Research (99-01-00038). 
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